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ABSTRACT

The classical solution for linear estimation
of a signal in additive noise 1s given by the well-
knovn Wiener filter. 1In certain circumstances,
however, it is advantageous to have a filter which
18 piecewise constant and which provides good per-
formance over an entire class of signal and noise
power spectral densities. First, a procedure is
presented for determining the optimum piecewise
constant filter. Then, for a particular class of
power spectral densities,termed the p-point spect-
ral class, the robust filter is determined.

I. INTRODUCTION

In the linear estimation of a random signal in
additive noise, an estimate,s(t), of the signal,
s(t), is obtained by passing the received signal,
x(t) = s(t) + n(t), through a linear filter with
impulse response, h(t,T). Assuming the signal and
nolse processes are real, zero-mean, uncorrelated
and wide-sense stationary with power spectral den-
sities (PSD's), S(W) and N(W), respectively, the
Wiener filter solution is obtained by choosing
ho(t), the impulse response of the optimum filter,

to minimize the mean-square-error (MSE) between the
signal and its estimate. The Fourier transform,
Bo(uo, of ho(t) is the solution to

e(s,N8 ) = "i%(s,N:8) @

where the MSE, e(S,N:H), is given by

e(S,N;H) = %;E[smu-a(v)lzm(w)ln(w)lzldw ()

This 1is for the case where H (w) 1s not constrained
to be causal.
The solution to (1) is found to be

H (W)

o () = _gsh:mm 3

the well-known Wiener filter. Knowing the signal
and noise PSD's, one can thus obtain the optimum
Wiener filter.

Section II details a procedure for obtaining
a plecewise constant *filter which minimizes the
MSE. By deriving the necéssary conditions for min-
imization, the optimum piecewise constant (QOPC)
filter is shown to be distinct from the optimum
quantization (0Q) of H (W). The QPC filter pro-

vides a simplified filter structure with only a
small degradation in performance.

Leonard J. £imind
Saleem A./Kassam

Unlvérsity 6t Pennsylvania

Thq Moore School of Electrical Engineerin

Philadelphia, PA 19104

.I—’ ,[rwm v ',t

In Section III, we show that a piecewise const-
ant filter also possesses the property of robustness
for a particular class of PSD's - the .p-point spec-
tral class. A proof of the robustness of the piece-
wise constant filter is given along with a justifi-
cation based on distance measure concepts, Several
authors have previously considered aspects of robust
filtering. Kassam and Lim [1}] and Kassam, Lim and
Cimini [2] considered robust Wiener and matched fil-
ters using a band-model for the PSD's. Poor (3, 4]
then considered these filters in a more general
framework.

The results obtained here are useful in situa-
tions where filtering is implemented digitally (e.g.
using FFT's). In image processing applications, for
example, Wiener filters have often been used [5].
Algo, piecewise constant filters may be particularly
useful in situations where the filter parameters
must be periodically adjusted. This is due to the
relatively simple forms of these filters.

II. OPTIMUM PIECEWISE CONSTANT FILTER

As stated in the Introduction, in certain sit-
uations it may be advantageous to use a plecewise
constant fi{lter. For example, this is particularly
helpful when the filter parameters must be periodi-
cally adjusted. In this section, we provide a pro-
cedure for obtaining the optimum piecewise constant
filter.

Considering symmetric PSD's such that S(w)S(-w)
and N(w)=N(-w) with total signal and noise powers,

cg and ag, given by

ag =- %-L.S(W)dw (4a)
o2 = 2] v (4b)

we assume a fixed-form filter that is piecewise
constant, i.e.,

B(w) = C <w<ay, 3=1,2,...m (5)

1* %31

where the C, are real, non;negative coustants and
n A A

{aj}j-o increasing with a_ = 0 and a_ 2 @ where 0

is the known bandwidth of the signal. The result-
ing MSE becomes

o
a
o5, N;1) = & le f 3 s e Pamenct
¥ 311
The breakpoints, a,, and the levels, Cj, then must

be chosen to minimize (6).

ldaw (6)
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: To minimize the MSE we differentiate it with
respect to aj and cj. The partial derivative with

Tespect to (:j gives

.ﬂ
Sac_;'%' .f 3 [-2(1-C,)S (4)+2C,N(w) ldw.
1

Setting this equal to zero and solving for cj, we
obtain
' rj S(w)
e w)dw
.j-l

C, =
b | rj
! (S(w)+N(w))dw

.j-l

s 1lsizcsm o

which is simply the ratio of the signal power in
the interval [aj_l,a j] to the corresponding sig~

pal plus noise power. The partial derivative with
respect to a.1 gives

1 2 2
ﬁj = Ha-cp?stap-a-c,, )1 +

1,.2 : 2

;[Cj M‘j)'cj-b-l.“(aj)]'
Setting this equal to zero, we obtain the equation
8(ag)[(2-CCy 1) (Cpy ~CYI=N(a,) [(Cy14€) (S, 7O,

1)csml : (8)

(vhere we are also assuming that S(w) and N(w) are
continuous at w = ‘j' 1£3 sm). Equations (7)

and (8) are a set of (2m-1) equations which must be
satisfied for a plecewise constant filter to pos-

sibly be the OPC filter. When considering a filter
for which cj-cjﬂ for some j-jo, then (8) is always

satisfied for j-jo.
valent to

For other cases, (8) is equi-

C.4C
+1
B (s = L7t | )

(provided we allow H o(‘j) to have any value when
’(nj)'l(lj)'o) .

As stated gbove, when cj-cjﬂ

il always satisfied. However, as the following dis-
-cussion shows, given the nuaber of allowable break-
points, this situation is not optimal unless Ho(v)

Consider a
(for some 1,

for some j, (8)

s itself a piecewise constant filter.
plecewise constant filter with C j-c 341

snd such that the necessary conditions above are
satisfied). For any constant interval [a,b) with
level Ca (i.e., either hj-l"jﬂ.) or any other

interval [81-1' ‘1)' 1¥4), 1f there exists a subdi-
vision with different levels which results in a
lower MSE, then the original filter is not optimal.
The MSE associated with the frequency interval [a,b)
with filter level Cab 1s given as
22 2 2
M - (1= + C
.(s'“'ﬂ)lb (1 cﬂb) as‘b l‘)c“.b (10)
where b
2 1 I
o = = | S(w)dw
s.b ] .
: a
and b
°§ - % I N(w)dw
ab 2
WithC ab defined as ir. (7), the partial MSE of Qo)
becomes 2 2
9 baN b
. ab "al
e(s,N; R)ab == 3 1)
cs + GN
ab ab
Now, using a different filter, H*(w), obtained by
- dividing the interval [a,b) into [a,t) and [t,b)
with levels determined from (7), with
t
2 e 1
os(t) 1; I S(w)dw
a
t
2 1 :
au(t) - ;J N(w)dw
a
2 2 2 2 2 2
{ thus as(b-t)-csab-cs(t) and a“(b—t)-c“.bwn(t)]
we obtain the partial MSE
2(oh(e)  oZ-tied(b-t) az
(S, N B = 3 — 2 )
og(t)+op(t)  og(b-t)+ay(b-t)
By writing out the MSE expressions and performing
some algebraic manipulations we obtain the condi-
tion for lowering the MSE. If there exists a point
te(a,b) such that
2wy ole-v)
S a’»
c"(t) on(b-t)
then the filter with cj-cj+1 is not optimum. On
the other hand, if
TR wite Section W
2 2 DDC Buff Section [
Cs(t) - os(b't) for all te(l.b) UM"NOU“C[D
2 2 JUSTHTRATION
o“(t) a“(b-t) N
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. a:
%%%% - —552 for all te(a,b)
L)
Yab

or, equivalently, ﬂo(w) is constant over the in-

terval (a,b). Thus, if (13) is not satisfied for
all the intervals, B (w) is a piecewise constant
o
filter.
For the special case where Cj-cj+1 for all j,

the filter is a constant for all w and 18 given as

u2

5w =~
Os + o‘“
This filter structure has previously been used (in
two-dimensional form) in image processing applica-
tions [5) when very little is known about the sig-
nal and noise processes.
To obtain the OPC filter parameters, C, and

\‘j' we must simultaneously solve (7) and (8) for

all j. 1In all but extremely simple cases these e~
quations are not directly solvable but require an
iterative technique for solution. Max [6] devel-
oped an algorithm for iteratively solving equa~
tions such as these. For the examples which we
will consider a simpler searching algorithm for

finding the minimum of a function of several vari- -

ables was applied to the general expression for
the MSE (6).

Equations (7) and (8) are only necessary con-
ditions. 1In general, the sufficient conditions
are difficult to obtain. The best answer is that
if all the second partial derivatives of the MSE
with respect to the levels and the breakpoints ex-
ist, then a critical point determined by the nec-
essary conditions is a minimum if the matrix whose
ith row and jth column element is

820

=5

is positive definite [6].

At this point it is interesting to conaider
the optimum quantization (0Q) of B (w). The 0Q of
B (v) 1s obtained by mininizing o

1-1;2,...m

x,=C, or a
critical ’ i i ¥

point

5
L] b ] .
-} | @, w)-c ) aw %)
=1 ‘j—l

Miniaizing as before, we obtain the necessary con-
ditions

a
I 3 lo(v)dv
l'_l _ Sverage value of no(v) on the

Cj . s -v.j'l interval (.171’ n,l

(1%a)

C,. 4C
141%C4
B (ay) = 5 (15b)

which must be solved simultaneously to obtain the
0Q of Ho(w). Obviously, the OPC filter and the OQ

of Ho(v) are not the same, and, in a linear filter-

ing sense, the 0Q filter is not optimum. That is,
it is not the best way to obtain & piecewise con-
stant filter given the signal and noise PSD's. If
Ho(v) is already a piecewise constant filter, the

OPC and 0Q filters will coincide.

As an 1llustration of the design of an OPC fil-
ter, we will congider the specific class of signal
and noise PSD's possessing the general Butterworth
form (>e) i.e.,

A
S(w) = , P21 (16a)
1%
S
and
NW) = —2——, n21 (26b)
M) -
B
where
Zpoz
S n
A= g sin 5;
and
B0l .
B= a sin'i;

Using these as our nominal densities we determined
the OPC filter parameters and calculated the resul-
ting MSE's. Table 1 gives the results for several
values of p, n, and ag. In all cases, we assumed
°§'ﬂ§-1 and aN-I. The MSE using the optimum filter
has also been tabulated for comparison. These re-~
sults show the small degradation in performance when
using the OPC filter as opposed to the optimum fil-
ter, Ho(w). In each case, the optimum filter is

very nicely approximated by the OPC filter. That
is, the OPC filter provides the benefits obtained
from quantizing Ho(w) but with a smaller MSE than

1f wve were to use the 0Q filter. One should note
that for this particular set of PSD's very little
improvement in performance is obtained by increas-
ing m (i.e., finer "quantization").

As an example, we will consider the case p=3,
n=1l, and as-l, i.e.,

L4
Oain;

YL

S(w) =

2
.| (' . ——
1w?

The optimum filter ( 3) 1is given as

+

P TS
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3 stng(1wd)
with the corresponding MSE, e(s,N;Ho)-0.393Io. The
OPC filter (m=2) is determined to be

. ll° (W) =
1+

- §0.615,]wl< 1.392
Bopc ™) {o.oao,lulz 1.392
(w=2)
with the corresponding MSE, e(S,N; HOPC )=0.4030
- T=2

which is a degradation in performance of only 2.4,
When an additional breakpoint is allowed (i.e.,
m=3), the OPC filter is found to be

0.627,lwl< 1.1844
) = 0.352, 1,1844 <|w|< 1.6807

OPC
(a=3) 0.039, |wl2 1.6807
with the corresponding MSE, e(S,N; HOPC )=0.3972,
=3

& degradation from using Ho(w) of less than 1X%. As

shown in Figure 1, the OPC filter nicely approxi-
mates the optimum filter, Ho(w), at the cost of

only a small degradation in performance.
III. ROBUSTNESS AND THE p-POINT SPECTRAL CLASS

In order to implement the Wiener filter, the
signal and noise PSD's must be known exactly. This
18 usually an unreasonable assumption and, conse-
quently, small deviations from these assumed, or
nominal, PSD's may result in large degradations in
performance. In situations such as these we would
like to design filters which are less sensitive to
deviations from the assumed PSD's.

Egsentially, we are interested in obtaining a
filter, HR(")' which will give a non-trivial upper

bound for the MSE over the classes of signal and
noise PSD's, 4 and N. Such a filter is robust in
the sense that a certain level of estimation per-
formance is guaranteed for the entire classes,d and
N. Mathematically, the robust Wiener filter, HR(w),

is defined to be the minimax filter such that

-1n |ax
Sed e(S,N:H) = Sel e(s,N;Hy) Qn
B NeN ReN

1t ll(w) is also the optimum filter for a least fa-

vorable pair of PSD's, S (w)e‘ and Np(w)eN, thenwve
have

.(s,u;nl) s e(sR.NR;IIR') < e(sR,NR;H) (18)

for sny pair (S,N)elxN and any linear filter H(w).

The particular classes of PSD's which we will
consider are defined as

X a
B38s)[2 [ sav = pg o2, 301,2,3,...m} (190)
3

LTI

N &k f *) Nwydw = Py Oas 371,2,3,...8} (19b)
-1 i
where a vo' a-An, 0« psj. P“j < 1 and

}: Pg Z =1 and where we are assuming that S(w)
J

=1 7} 3=1

and N(w) are symmetric about the origin and contin-
uous at w-aj, j=1,2,...m. The breakpoints, aj, and

and the fractional powers, Pg o: and Py ag, are as-
3 h)

sumed known. The mth.breakpoint 1s taken to be in-
finity unless the bandwidth of the signal is also
known, These classes of PSD's are termed p-point
spectral classes, and are useful because the frac-
tional power is an easily measured parameter of the
process.

Intuitively, it seems that if the only know-
ledge about the signal and noise PSD's involves the
fractional powers, then the least favorable signal
and noise PSD's can be anything so long as their
ratio 1s piecewise constant. The previously men-
tioned image processing application hints at this
solution. Also, previous work in robust filtering
[1,3] has shown that the least favorable PSD's tend
to look as much alike as possible. These intuitions
are stated more rigorously in the following theorem.

Theorem 1: For any signal and noise PSD's, S(w)
and N(w), which are members of the general p-point
classes, & and N, respectively, the robust filter,
HR(w), satisfying (18) is given by

Sg(w)

B * S a0

where the least favorable PSD's, SR(w) and Na(w).
are such that

R(") = kj“ W), we[aj l’aj) (21)
where -
[* :
.j-ls(v)dw psjos
kj - - - 7 j-1,2,....m (22)
I J Py, %y
N(w)dw b |
'j-l

Proof: The right-hand side of (18) is true by the
definition of l-lR(w) as the optimum filter for SR(")

and Nl(w). Thus, it remains to show that
o(S;N;Hy) < e(SR,NR;HR) for all (S,N)elxN.

The appropriate MSE's are calculated as

o(s,, N, 50)-1 2 P(s (")(1+k,) 2 g ) (1—4;) Yaw
j -1

and

k
o«(8,N; n,)-—ji P(s(-)(mj) 4*(")(1;‘1‘;) Yaw
851




) L : - o - o e e e e s - st rs
N But since S(w) and SR(v) both belong to 4 and N(w)
. and N‘(v) both belong toN, both quantities reduce + fj (s-s ){c'(—))dw] (27)

to the same result and we obtain *3-1

a Ps a:pN o: However, from Theorem 1, the ratio SR/NR is piece-
'(s'm"n)"(sn'"n‘“n) - Z 3 3 (23) wise constant so that (27) becomes

=1 p. o tp, ©

s.1 H Nj N

" Has,m-d(spNp)] 2

and the assertion is proved. Thus, once the ro- 2

bust filter is constructed it gives the same level

of performance for all signal and noise PSD's {n lj lj

the general p-point class for which it was defined. L I

Contrast this with the performance of the optimum 2 (8-Np)dw + Bj (s-5p)dw]
Wiener filter, Ho(w), which may degrade consider- =1 j -1 LI

. ably with small deviations from the assumed PSD's.
It 1is instructive to consider the statement
made earlier that the least favorable PSD's tend where A, and B, are constants. But since S(w) and
to be "closest" in some sense. We will use the
concept of distance measures [7,8] to justify this SR(w) both belong to ‘x’ and N(w) and NR(V) both be-
statement. We have the following lemma. long toN, the right-hand side is zero and we ob-
Lemma 1: The least favorable PSD’s, SR(w) and tain
Rl(v), defined as in Theorem 1, minimize the dist-

ance measure, d(S,N), over the p-point spectral the desired result.
classes, & andN, where d(S,N) is defined ast

a(s,N) 2z d(Sg,Np) for all s,Med xN

Example: A simple (although somewhat contrived) ex-
A Q ample serves to illustrate the performance invari-
d(s,N) = E‘N[C(L)] - 2[ N(w)C(L)dw (24) ance of the robust filter. Assume the nominal sig-
. 0 nal and noise PSD's are given by

§, () = {1/2, ol <1

wvhere C(*)1s any real, continuous, convex function otherwise

on (0,) and LE38) 1-|wl, lw] <1

N({w)* N (w) =
Proof: Assuming d(S,N) 1s finite, we must sghow ° 0, othervise

that the least favorable pair minimizes the dist- 2.2 1
ance measure, i.e., with total signal and noise powers O5=ON" T+ We

will assume that these PSD's are really "guesses”
based in part on power measurements made at the ar-
bitrarily chosen p-point locations a1-1/2 and a,=1

d(SR, R) £ 4(s,N) for all (S, N)de (25)

Now,
(the signal bandwidth value which has been assumed

known). Th timum filter for th inal PSD’
"[d(S,N)-d(Sn R)]. jz [ J,j NC(—)dw fj N C(—)dw] iso::tainedeagp um er for these nomina s

8.1 -1 f
j H(v)'%m-,lvl‘l T
- Z ( fjn(c(—) C(—))dw with the corresponding minimum MSE, e(so.No,Ho) ;
i=1 j 1 0.0717. The robust filter, Hk(w), designed using
only knowledge of the fractional signal and noise
s ) powers 1g obtained as
a ;
: 9 R 2/5, 0¢ |wl <172

. + o] — - .
.f 1(n nk)c(“n)wl (26) By () { 3 v 1
1 with the corresponding MSE, e(So,No,HR)-0.07lo3 (a

where we are assuming that 0 < SR(w). R(") < w, degradation of only -3.6%). Suppose, now, that the
actual signal PSD (let N(w)-No(v)) is

But, for comvex functions, C"(w) 2 0, 80 that ]
s = 1 0% Jwl < 174, 172 < |w| <3/4 ﬂ
s su , sR s sR 0, otherwise
“i) - C(N-,:) x (i;) (i - “_l.) Using the previously derived optimum filter, Ho(v),
the performance degrades ~13% to a value of
:“m‘“§‘°“ (26) then becomes (after some manipuls- «(S,N ;K _)=0.0811 while the robust filter maintains

R the same performance level, e(S.N;llR)-O.O'IIoJ. Ob-~
'“(s m'd(sp“ a2 I U ("Nn){C( )-C’( )(—”d" viously, for any deviation in s (w) and N (w), 8o

j -1 long as the resulting PSD's are in the geneul clas-
ses, 4 and N, the robust filter will provide the

4+ w dependence has been dropped for convenience.
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same level of performance while the optimum filter
performance may degrade sewerely.

‘Up to this point we bave not confronted the
question of how to choose the location of the break-
points. Obviously, if nothing but the fractional
powers are known it is quite arbitrary where we
place the breakpoints. However, if some additional
knowledge about the signal and noise characteris-
tics is available, we can use this knowledge to
better choose the breakpoint locations. For exam-
ple, if "guesses™ are available for the signal and
woise PSD's we can use the OPC filter as a guide
for designing the robust filter.

Several extensions are currently under invest-
igation. The most useful concerns the extension of
these results to two-dimensions, which would be ap-
plicable in image processimg. The robustness con-
cept for the p-point spectral class is also being
generalized to include cases where the locations of
the signal and noise breakpoints do not coincide,
where the location of the breakpoints is uncertain
(or, equivalently, where there are errors in the
power measurements), and where there is some cor-
relation between the signal and noise.
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TABLE 1. OPC filter parameters and corresponding

MSE's for Butterworth PSD's (MSE's
using Ho(w)'is glven for comparison) [9]

p n a mn ay Cyq MSE MMSE(H,(w))
311 2 1.392 8.8&3 0.4030 0.3934
311 3 1.184 0.627 0.3972 0.3934
1.681 0.352
0.039
31 .5 2 0.670 0.718 0.3085 0.2939
0.063
9 1 1 2 1.103 0.651 0.3557 0.3499
0.022
9 1 1 3 1.046 0,655 0.3531 0.3499
1.165 0.351
0.009
9 1 1 4 1.038 0.655 0.3531 0.3499
1.153 0.396
1.810 0.036
0,001
9 1 2 2 2.277 0.574 0.4291 0.4084
0.022
4 2 1 2 1.243 0.529 0.4821 0.4775
0.177
2 41 2 1.249 0.471 0.4821 0,4775
0.830

Figure 1. OPC filter for Butterworth PSD's,
p=3,n-1,ns-1.
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